Energy backward error: interpretation in numerical solution of elliptic partial differential equations and behaviour in the conjugate gradient method
نویسندگان
چکیده
The backward error analysis is of the great importance in the analysis of numerical stability of algorithms in finite precision arithmetic and backward errors are also often employed in stopping criteria of iterative methods for solving systems of linear algebraic equations. The backward error measures how far we must perturb the data of the linear system so that the computed approximation solves it exactly. We assume that the linear systems are algebraic representations of partial differential equations discretised using the Galerkin finite element method. In this context, we try to find reasonable interpretations of the perturbations of the linear systems which are consistent with the problem they represent and consider the backward perturbations optimal with respect to the energy norm naturally present in the underlying variational formulation. We also investigate its behaviour in the conjugate gradient method by constructing approximations in the underlying Krylov subspaces which actually minimise such a backward error.
منابع مشابه
Energy backward error: interpretation in numerical solution of elliptic partial differential equations and convergence of the conjugate gradient method
We derive backward error formulas for a linear system of equations in norms induced by given symmetric positive definite matrices. We consider a special case of a backward error induced by the energy norm when the system matrix is symmetric positive definite and provide its interpretation in variational approximation of elliptic problems. Next, we study the convergence of the conjugate gradient...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA Generalized Conjugate Gradient Method for the Numerical Solution of Elliptic Partial Differential Equations
We consider a generalized conjugate gradient method for solving sparse, symmetric, positive-definite systems of linear equations, principally those arising from the discretization of boundary value problems for elliptic partial differential equations. The method is based on splitting off from the original coefficient matrix a symmetric, positive-definiteonethat corresponds to a more easily solv...
متن کاملA numerical method for solving nonlinear partial differential equations based on Sinc-Galerkin method
In this paper, we consider two dimensional nonlinear elliptic equations of the form $ -{rm div}(a(u,nabla u)) = f $. Then, in order to solve these equations on rectangular domains, we propose a numerical method based on Sinc-Galerkin method. Finally, the presented method is tested on some examples. Numerical results show the accuracy and reliability of the proposed method.
متن کاملEfficient Solution of Elliptic Partial Differential Equations via Effective Combination of Mesh Quality Metrics, Preconditioners, and Sparse Linear Solvers
In this paper, we study the effect the choice of mesh quality metric, preconditioner, and sparse linear solver have on the numerical solution of elliptic partial differential equations (PDEs). We smoothe meshes on several geometric domains using various quality metrics and solve the associated elliptic PDEs using the finite element method. The resulting linear systems are solved using various c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013